MI RF Power Calculation

- Cavity Q = 3000 (at max ramp rate), R/Q = 104 Ω , R = 3.1 x 10⁵ Ω
- 17 cavities, each delivering 175 kW (max 200 kW) for a total of 3.0 MW
- Wall/tuner loss: $V(gap) = 240 \text{ kV} \Rightarrow P = 92 \text{ kW each, total of 1.57 MW}$ for 17 cavities
- Beam intensity: 3.3×10^{13} , 4.0×10^{13} and 6.0×10^{13}

Ramp rate (GeV/s)	Beam intensity	Power to the beam (MW)	Wall/tuner loss (MW)	Total power (MW)
240	3.3 x 10 ¹³	1.27	1.57	2.84 (o.k.)
240	4.0 x 10 ¹³	1.54	1.57	3.11
240	6.0 x 10 ¹³	2.30	1.57	3.87
280	3.3 x 10 ¹³	1.48	1.57	3.05
280	4.0 x 10 ¹³	1.79	1.57	3.36
280	6.0 x 10 ¹³	2.69	1.57	4.26

Need second PA for either higher beam intensity or fast ramp!

2nd Type (High Intensity) Robinson Instability

- Power dissipation:
 - Anode power = 100 kW (absolute max 150 kW)
 - Wall/tuner loss = 92 kW
 - Energy dissipation per cavity= 192 kW
 - Total dissipation of 17 cavities = 3.3 MW
- Power delivered to the beam: (see previous table)
- Stability criterion:
 - Dissipation power > Power to the beam
 - Beam stable in all three cases: 3.3×10^{13} , 4.0×10^{13} and 6.0×10^{13}